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Take another thoughtful look at the compatibility equation:

(e?:=1) (e'=1) §,
(ei?:-1) (e’ =1) 8, |=0
(e0e-1) (e'"s-1) &

Notice that this equation is trivially satisfied if all the y.’s = 0. In this
case, the center column becomes all zeros. But howl can this be a
solution??? After all, the body is moving through four finitely sepa-
rated positions. Having all the gammas equal to zero means that the
crank doesn’t rotate as the body moves from one position to another!

HOWZITPOZZIBLE???2???

I’ll1 tell you howzitpozzible. The
centerpoint M is at infinity so the crank
is infinitely long! An infinitesimal twitch
of this infinitely long link moves the
circlepoint K through a finite displace-
ment along a straight line (since the ra-
dius is infinite). Point K is a sliderpoint
and can be used for designing various
types of slider mechanisms for the four
given positions.
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P

Move M\
to infinity!

RSN

As point M moves further and
further out, the swing angle y of
the link gets smaller and smaller
even though the circlepoint K 1s
still moving through a finite dis-
placement. At the same time, the
arc along which K moves gets
flatter and flatter as its radius
increases. In the limit, the arc
becomes a straight line and the
swing angle becomes zero. At
that point, it is a lot cheaper to
use a slider to move point K
from its ith position to its jth po-
sition than it is to hire a rental
car to take a union workman out

to infinity to install and maintain a fixed pivot there.

Here’s another neat thing to
notice: It is possible to have
one of the gammas in the
compatibility equation be
zero and not have the others
be zero at the same time.
What that means is that the
circlepoint K is superim-
posed with a pole for the two
positions in question and
that the four position solu-
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tion has degenerated into a special case of a three position problem.
This is what Kurt Hain calls “point position reduction”. The link
will dwell somewhat as it moves between the two positions and then
start to swing again as it moves on to the remaining design positions.

In the example shown here, the angle ¥ is equal to zero so the point
K falls on top of the pole P12. The link s%own has no swing when the
body is in either position one or two, but it does swing as the body
goes on to positions three and four. Actually, the link might move
while the link is passing between positions one and two, since the
synthesis only controls what happens in the design positions and not
what happens as the mechanism moves between positions.

Gander again at the compatibility equation:

(e/?2-1) (e'2-1) 8,
(ei?3-1) (e'72=1) & |=0
(ef®4-1) (e'?s—1) O,

If Yo = (j)z, Y3 = (1)3, andy 4= ) 4 azzaforinstancefordasakeadiscussion,
then the equation will also be trivially satisfied, because the second
column will be identical to the first.

HowDyaAccountForThat???2?2??
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From a physical point of view, this means that the rotations of the
crank are now the same as the rotations of the moving body. In the
case we just finished studying, the rotations of the crank were the
same as the rotations of the fixed body, namely zero.

I = Notice the perfect symmetry involved. =1l

When yj = 0 (= frame rotations) we had a sliderpoint K which moved
along a‘straight path perpendicular to the infinitely long link K—M.
The centerpoint M was at infinity.

In the case we are now considering, the y. = ¢. (= moving body
rotations). We have the identical situation {)ut fér the inverted mo-
tion! Point M is now a sliderpoint of the inverted motion. In other
words, if an observer were riding on the moving body rather than
standing on the fixed body he or she would see the circlepoint K at
infinity.

As seen from the point
of view of observers
sitting on the fixed
frame, there would be
a straight line of slid-
ing attached to the
moving body. As the
body moves through
its various positions,
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this straight line would always pass through the point M on the fixed
body, so we can call point M a “Concurrency Point”. It can be used
as a location for a slider pivoted to the frame at M and with a straight
slide track in the moving body. That slide track is perpendicular to
K—M in each design position. This time, however, the point K 1s at
infinity and point M is right there in front of your nose!

If you have a case where one of the gamma’s is equal to one of the
phi’s but the other gamma’s and phi’s aren’t equal, then that means
that the fixed pivot M is located at the pole for the two corresponding
positions. This is in exact analogy with the inverse case in which the
moving pivot was located at a pole.

N\

Thus, the sl.i(.ier poil}t for \ . &
four positions 1s a \& "f‘<?
f‘\

\ . QP
2. ¢ C

circlepoint whose corre- N
sponding centerpoint lies \&
at infinity. Conversely, A
the concurrency point for
four positions is a
centerpoint whose corre-
sponding circlepoint lies
at infinity. The slider
point is pinned to the

moving body and the Centerpoint

A Y
e\ .
concurrency point is LOCUS Cirglepoint
pinned to the fixed body. Locus
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Ifyz =( but Y3 andy 4 dre not zero, then this means that the circlepoint
is at the pole P, and tfour positions have reduced down to three
displacements of the circlepoint for synthesis purposes. (Point posi-
tion reduction!) Similarly, if v, = (1)2 buty, # (1)3 and Vg # (b4 then
the centerpoint is at the pole PIZ and we have a different form of
point position reduction.

Ify. - Yy = 0 for j, k = 2, 3, or 4 with j # k then the circlepoint will
cor%espond to the image pole P.k(l) giving yet another wrinkle on
how you can use point position Teduction.

Naturally, we can arbitrarily select the numbering of our positions
for convenience, so we can put any pole we want at the fixed or
moving pivot.

P

Since the centerpoint curve passes through the six poles P12 13

P14, P23’ P24, P34 it is also known as the “pole curve”.

The circlepoint curve passes thro(li%h the six poles in their position

' - (1) (1)
onelmages.PlZ,PB,PM,P23 ’P24 ’P34 .

Yet another strangely disturb-
ing tidbit of trivia!
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“So where does this all
lead us?”, you ask.

/"—_‘\/——‘\
“'m about to tell you the
moral of the story”, | say!

The moral of the story is that you can synthesize all kinds of differ-
ent mechanisms by using various combinations of these special slider
points and concurrency points along with ordinary circlepoints and
centerpoints. For instance, you can design damn near any kind of a
mechanism that can be built with pin or slider joints. You can make
all sorts of slider-crank mechanisms of any conceivable inversion,
double slider mechanisms, turning-block mechanisms, tumbling block
mechanisms, four-bars, dwell mechanisms, bits and pieces of six,
eight, or ten link mechanisms, frammis glitzifiers, widgets, and more
once you get the hang of how to do it. To get my free booklet on how
to get the hang of it send 10,000 cereal box tops along with the origi-
nal sales receipts and UPS labels to:

Dr. K’s Fantastic Booklet Offer
1000 Infinity Drive
Battle Creek, Michigan

This is a special, limited one time offer. Offer is void where prohibited. 5 cent rebate in MA, VA, DC. Offer expires January 1, 1976 or with expiration of
Dr. K. whichever comes sooner. Read fine legal print for exceptions to offer.
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j" Displaced _—~—-—
Position n

Reference

“ Position

NS,

/////////,

DO ~

respect to the origin, point S is located in it’s reference posi
tion by the sum of the unknown vector P (which points to an
arbitrary point on the line of sliding) and vector S1 which 1s aimed

l et S be the unknown sliderpoint in it’s starting position. With
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along the line of sliding. When the body moves to a typical jth dis-
placed position, the sliderpoint is located by P + Sj.

S. can be expressed as A. S1 where )'j can be thought of as being a
Sgalar “stretch” ratio.

C “For some reason, they call me “5t®
o T

\\—.g.

As before, the unknown vector Z1 is rigidly attached to the
moving body in its first position and shows where the given

reference point A1 is located relative to the slider point.

Vector Z is rigidly attached to the moving body and goes to
position Z. when the moving body has translated and ro-
tated to the jth design position.

| bet | can guess what's
gonna come nextl

You got it! We're gonna do just what
we did before and write a loop closure
equation.

122



Closure of the above vector polygon is expressed by

di=(e® —1)Z; +(A,-1)8S,
] =2,3,...n

For three positions we have the following system of equations:

(e —1) Ou-1 [z,] 5,
(e —1) (Ay=1) [|Sq] |85
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For arbitrarily chosen values of the scalars, A, and 7% (provided that
L. # 1) we can solve for the location of the Sligerpoini S. Holding 7x3
fijxed, say KB = 2, and varying A, we obtain a circular locus of
sliderpoints in the moving body, together with their associated direc-
tions of travel in the fixed body.

Making the substitutions A, = A, - 1 and A, = A, - 1 and then solv-
. : 27772 3773
ing for Z and S yields:

_ 0,A5 — 037,

T (e — DA; — (e — DA,

S - (e —1)8; —(e™ - 1)0,
LT (e — DA, (e — DA,

Z,

In this form, the equation for Z may be seen to be a form of bilinear
mapping or a linear fractional transformation which maps points on
the A, (or AB) line into points on the sliderpoint circle. Simulta-
neously varying A and A3 does not yield a two-dimensional sur-
face of possible three-position sliderpoints but merely moves the ref-
erence point for the end of P in or out along the direction of sliding.

The sliderpoint locus may be shown to be a circle containing the
poles PlZ’ Pzg(l), and P31. Thus, these poles are sliderpoints for
three positions.(Yet another example of point-position reduction!)
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Further, all sliderpoints slide in the direction of the orthocenter of the
pole triangle. Also,... but I digress yet again.

' )
Sdig o010 772,

Four positions of a slider yields three complex loop closure equa-
tions. For a solution to exist, the augmented coefficient matrix must
be singular:

(e® -1) (A, - 1) 0,
(e —1) (A, —1) 8, =0
(e® —1) (A= 1) Oy

" T e

That's your Compatibility Condition.

Deal with itl
Here, one A say ?» can be arbitrarily chosen so long as it doesn’t
equal 1. Then, expandmg in terms of cofactors of the second column
we get 7\3A3 + k Ay = Al K2A2 where the A.’s arethe same as they
were before in the three position case. We c]an let A, = 2, for ex-
ample, and then solve for a 7\3 and a A , that are compatible with that
choice. One way to do this is to separate out the real and imaginary
parts of the compatibility equation as
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’“A3x A4xv }\‘3 _ Al»\” “}\'ZAQX
Ai‘.v A4.v )\‘4 Aly "KzAzy

and then solve this system of two real equations for the two real
scalar unknowns A, and a A,. Then 7\3, X3, and a A, will form a
compatible set of stretch factors and we can solve any two of the
original system of equations for Z and S. Notice that varying the
choice of A, does not change the slider point in any way, shape, or
form but merely changes the reference point along the line of sliding
to which the vector P points. It doesn’t alter the sliderpoint which is
obtained. The slidepoint is the sliderpoint is the sliderpoint just like
a rose is a rose is a rose and there is only one possible sliderpoint for
a general four position motion. Now that I think about it, that’s re-
ally dumb, since a rose may be a rose but there are lots of different
kinds of roses so why do people say arose is a rose is a rose anyway?
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In this figure, C represents the unknown concurrency point we are
looking for in the fixed body. It lies somewhere on the centerpoint
curve, with a corresponding circlepoint at infinity! In other words,
there is some as yet undetermined straight line fastened rigidly to the
moving body which [passes through C in all positions of the body.
The sliderpoint and the concurrency point are related by a kinematic
inversion. The sliderpoint of the motion is the concurrency point of
the inverted motion and

vice versa. /ﬁ“( \

“Ish’t it illegal in Virginia to
have vour vice versa?”

Let D be a vector from
point C along the straight
guide fastened to the
moving body.

Thus, point C can be used as a turning slideblock for guidance of the
body. Alternatively, notice that the same relative motion is obtained
by having a straight link at C and moving the slide along vector D

(or parallel to vector D) to Turning block )

any other point of the mechanism Slider shifted

body. Thus, once point C parallel e
-

has been determined, it
can be used for the design
of any tumbling block
mechanism for four posi-
tion body guidance!

Q)

Equivalent
Tumbl;ing block
mechanism
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Now, to solve for point C, let E be an unknown vector rigidly fas-
tened to the moving plane. E locates the arbitrarily chosen reference
point A with respect to some point on the line of sliding in the mov-
ing frame. D is an unknown vector in the moving system which
points along the line of sliding to the end of vector E. The tail of
vector D locates the concurrency point.

As the moving plane 7 goes from m, to T, vectors D and E rotate
with it through the specified angle ¢.. AtJthe same time, vector D
changes length due to sliding of the ‘l)ody through the concurrency
point.

Let p; = |Dj| / |D,| represent the scalar * stretch” in D.

Then, for four finitely separated positions, the following loop clo-
sure equations can be written:

Four positione???
What about three poeitiona?

RN
Ill leave that for you to
figure out as an exercisel
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- | w
(2 —1) pa(e® 1 . S
(e —1) pse™ —1 Dl = |0,

(e — 1) pyle®s — 1|1 [0

As before, this system of three non-homogeneous complex equa-
tions in E and D can only have a solution if the augmented coeffi-

cient matrix is of rank 2:

This whole tome is starting
to get pretty rank!

(e —1) py(e® —1 0,
(e —1) psye®™ —1 0, =0
(e —1) pyle® -1 9,

Consistency Condition.

Here, the D. are the very same 2 by 2 cofactors we used before. With
this notation, the compatibility condition becomes
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P:A; +p A, =A - PLA,

after you have expanded the compatibility determinant in terms of
cofactors of the second column.

To solve this, one stretch factor, say P5, can be arbitrarily chosen as
long as it isn’t chosen to be one. For instance, let Py = 2. Then one
can solve as before for r3 and r4.

Just as with the sliderpoint, varying Py does not change the
concurrency point location. It merely changes the point on the line
of sliding to which vector E is referenced. Thus, for four positions,
there 1s only one concurrency point and (since they are kinematic
inversions of one another) one slider point.

For three positions, there is a circular locus of concurrency points.
This locus contains P 2 P23, and P3 along with the orthocenter of
the image pole trianglle through whic% all lines of sliding pass.

e

e
N
[ LIz )

—— -
e /P\__,///
P
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And now, to the accompaniment of thunderous applause, comes the
moment you have been waiting for:

Five Position Burmester Theory!

(The mathematical theory behind this stuff is based on the pioneer-
ing work of George N. Sandor and Ferdinand Freudenstein, two of
the nicest, most brilliant people I have ever known. I threw in a few
bits and pieces but they did the hard stuff.)

In the 1960s, Professor Ferdinand Freudenstein
(known as the “Father of Modern Kinematics”),
revolutionized the field of mechanical design by
ushering in the computer age in kinematics synthesis
N and the design of mechanism. George Sandor was

\vG » his first doctoral student. I was fortunate to be
™, George George’s first doctoral student and to have

e Fer dinand 9 Ferdinand serve on my examining committee. At last
. 1911 - 1996 count, more than five hundred doctoral students
Freudenstein

1926 - 2006 spanning five generations have descended from “The
Freudenstein Doctoral Tree.”

Fascinating though this five position stuff may be for the mathemati-
cally inclined, five position Burmester theory is actually a bit of a
dud in practice. On rare occassions it may prove useful, but for day
in and day out mechanism design there is nothing like two-position
theory or maybe three or four position theory if worst comes to worst.
Having fewer kinematic constraints means you can satisfy many more
real-world mechanism requirements as well as just hit-

ting a bunch of design positions! That is apt to P N
keep your boss happier than just seeing you bur- | Grumpfl \

ied under pages of equations and calculations! _
N

swsiss Sandor
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For five finite positions, we have the following system of four com-
plex displacement equations:

(e —1)Zy +(e" —1)W, =0,,j =2,3,4,5

We now have four complex equations, four scalar unknowns (Y5, Y,,
Yy and Vs ) and two complex unknowns (Z1 and Wl)' All told,
there are eight scalar unknowns and eight scalar equations. If only
we knew the values for the gammas we would have a system linear
in the Z1 and W but alas, we don’t have that information. We must
first laboriously }igure out a compatible solution for the gammas.

For a solution to exist, the 4 by 3 matrix

(ei¢2 —_ 1) (ei'Yz — 1)
(e ~1) (e — 1)
(ei¢4 —_ 1) (eiY4 _ 1)
(ei¢5 — 1) (eiYs — 1)

(&

o O On On
- W

W

must be of rank 2. A necessary (but not sufficient) condition for this
matrix to be of rank 2 is satisfaction of the following two compatibil-
ity conditions:
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(e —1)(e™ —1) 0,
(e —1) (e —1) Oy =0
(e —1) (e —1) O,

(e — 1) (e™ —1) &,
(e —1)(e™ —1) 8, =0
(e —1) (e —1) O

(Note that one could view the five-position problem as two superim-
posed four-position problems. The first compatibility condition is
fulfilled by circlepoints and centerpoints for positions 1, 2, 3, and 4.
The second condition covers positions 1, 2, 3, and 5. If both equa-
tions are satisfied simultaneously, it would seem that the intersec-
tions of the two sets of loci would yield circlepoints (and centerpoints)
valid for all five positions. That’s true, but they are buried among a
bunch of spurious intersections.

Brief parenthetical expression to
expand on the above brief
parenthetical expression

(1 hope your compiler allows multirle levels of nesting)
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As seen in the last section, centerpoints for positions 1, 2, 3, and 4
include the poles

P, P

12 P

13 " 14

Pyy Py

P34

and centerpoints for positions 1, 2, 3, and 5 include the poles

Pio P13 Pos
Pas Pas
F3s
so the common intersections would include the points P12, P13’ and
P
23

In formulating our five position compatibility equations we had a
choice of ten possible pairs of compatibility equations. (There were
five groups of four positions possible. We picked two of the five
groups. Thus we had five choices for the first compatibility equation
and four choices for the second— but it makes no difference which
we call first or second.)

Since these common intersections (P12’ P13’ and P 3) are not valid
for other compatibility equation groupings, they must be thrown out.
Furthermore, the sliderpoint and the concurrency points (Yj =( and
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v. = ¢.) differ for the various sets of groupings so they must also be
discarded.

One can show that the circlepoint and centerpoint curves are cubics.
Since the centerpoint curves for positions 1, 2.3, and 4 and 1, 2, 3,
and 5 are of the third degree they have 3 X 3 or nine intersections.
However, we just observed that the poles P12’ P1 3 and P 3 must
be discounted along with the two imaginary intersections at infinity.
Thus, at most, there are only four real circlepoint-centerpoint pairs
associated with five arbitrarily specified positions. (In fact, some of
these intersections may turn out to be imaginary, so there may be
four real “Burmester Point Pairs”, two real and two imaginary
“Burmester Point Pairs”, or all four pairs may turn out to be imagi-
nary and there may be no usable solutions.

*)

When we last saw young Dr. Kildare, he was being rushed to emer-

gency to solve the pair of compatibility equations using his math-
ematical wizardry. We now rejoin our main feature.
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Expand both compatibility equations in terms of the second column.
This yields the pair of equations:

~A, +A e + A e + A e =0 (1)
A, + A e +Ae™ + A e =0 (2)

where Al’ A,, AS’ and A 4 Are as defined before and where the A.’
differ from t%e A. in that they have #5 subscripts in place of the "

subscripts. (Notice that the cofactor for the bottom element is A 428
before and not AS )

Equations (1) and (2) are
loop closure equations. If
we take the complex con-
jugate of each element in
these equations we can
create a second set of valid
complex equations. (We
can picture these new
equations as being a mir-
ror image or reflection
about the X axis of the
original equations. This
picture illustrates the com-
plex conjugate of equation
(1) for example:
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Let’s call the complex conjugates of equations (1) and (2) equations

(3) and (4). This gives us the following set of four loop closure
equations

~A, +A e + A e + A e =0 (1)
A, +A e + A e + A e =0 (2)
A, +A e + A e + A e =0 (3)
A +A e + A e + A, e = (4)

(Once again, notice that A 4= A 4’.)

Now we can eliminate Yy 4 from equations (1) and (3) by shuffling the
equations around to isolate the y 4 terms and then multiplying through
by the complex conjugates. After we are done, we can take a brief

dinner break at a fine restaurant (we deserve it!) and then do the
same thing to eliminate Ysg from equations (2) and (4).

This will leave us well fed and with the following system of equa-
tions:

From equations (1) and (3) we get:
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Aje™ A, e =AA,
=AA, +AAe™
+ A A+ A e
+ AA, + A A ees

+ AA e+ AAee™ + AA,

[

OR : !
S “""‘[,:*-{rOar

C,e" +d, +C,e™ =0 (5)
where

C, = A3(Z§1- + Kz e')

and

3 ——
d, =A A" + 2. Ajl_fj —~AA, +AAer

j=1
Similarly, from equations (2) and (4) we get
C,e" +d, +C,e" =0 (6)
where
C, =AyA, +A,e™)
and

o 3 T i [ P ———
J‘._"
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Notice that CQ and d,) are of the same form as C, and d, but with
primes on the'A. for j = 1, 2, and 3. Also, notice that dl and d, are
real numbers while C1 and C, are complex quantities. B

) . ) Y3 .
Equations (5) and (6) are polynomials in € 7 We have terms in
5 . o -
e’ Y3, e3, e, e

Buried in the coefficients of the polynomial is the unknown, Y along
with the known Aj and Aj’ ‘s.

/_’.‘“»
We're still pretty much lost unless there isa\\

neat way to unsnhaggle this mess! J

Fortunately there is, thanks to James Svlvester,
the clever old English mathematician!

By multiplying equations (5) and (6) through by € "3 we can create

two more valid equations in powers of € v
C, e +d, e +C, =0 (7)
C,e? +d, e +C,= (8)
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Consider equations (5), (6), (7), and (8) as being a system of four
complex homogeneous simultaneous equations in the unknowns

elL’Y3’ el'y?,’ elU’Y3’ el~Y3

For the system to have a solution, the determinant of the coefficients
must vanish.

0C, 4 C

E = 0 ngzcz =0 (Eliminant equation)
C,d C, 0
C,d,C, 0

Vanishing of this eliminant is a necessary (but not necessarily suffi-

cient) condition for the equations (5), (6), (7), and (8) to have simul-

. lé'Y3 lY3 lU'Y3 l——Y3
taneous solutions for e ,e' e ">, ¢

Notice: & We now have an equation in y,. Y, has been elimi-

nated from consideration. This trick for solving equations 1s known
as Sylvester's Dyalitic Method of Elimination after the great 19th
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century English mathematician and lecturer on kinematics, James
Sylvester. In 1873 Chebyshev turned Jimmy Sylvester on to kine-

matics when he wrote Jim

Yo, Jimboy-

“Take to kinematics. [t will repay
you. [t is more fecund than geom-
etry. [t adds a fourth dimension to
space.”

(Actually, historians believe the words “Yo, Jimboy” were acciden-
tally added to Chebyshev’s original letter by a careless latter-day
scholar who felt the need to bring Chebyshev’s slightly archaic word-
ing up to date to appeal to modern day students. That same academi-
cian feels that current students might have a significant misunder-
standing of the meaning of the word “fecund” as well. Since few
students these days own a thesaurus or a dictionary, the author feels
it is necessary to explain that “fecund” means “Characterized by great
productivity: fertile, fruitful, productive, prolific, rich, giving forth
to many possibilities” and has nothing to do with sex in the city.)

Expanding the eliminant in terms of cofactors of the first column
gives
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Cldlc———l Cldlé—;
C,|Cd,C | -G, C, 4, G,

d, C, 0 d, C, 0
or

d,d,C,C, -d;C,C, -C,C(C,C, -C,C))
+d,d,C,C, -diC,C, +C,CiCC, -C,C) =0

Again, by way of reminder,
C, =A;A, + A, e'"?)
and

d, = A Ae +ZAA AR, + A Ae™

Jj=1

o .. plY
Thus, the eliminant turns out to be a real polynomial in € * . Each
term of the eliminant is accompanied by its complex conjugate. E is
of the form
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oLe " + e +oye? + o +

e+ 0pe”? + e =0

Here, the o, is real and the other ocj’s are readily computed functions
of the known Aj’s and Aj”s (which in turn were calculated on the
basis of the known input rj’s and Q)j’s).

We can visualize the eliminant equation as being a vector loop clo-
sure equation in which we have a bunch of known o vectors that

need to be rotated by different multiples of the unknown angle vy, in
order to sum to zero:

iY
}
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Since the eliminant is real, we can work with the real portion alone.
The real part of the eliminant is:

oL,,coS8 3Y, — Oy, Sin 3Y, +0,.c08 2Y, 0
— Oy, Sin 2Y, +00,,COS Y, — o, ,Sin Y, + O

"The horrendous mess"

We need to solve this horrendous mess for the unknown y,. By means
of trig identities (you did take trig in high school, didn’t you?) we

can express cos(ny,) and sin(ny,) in terms of one and only one trig
function, namely tan(—-—-——) !

Among other admirable qualities, the tangent of the half angle 1s
nice because it is single-valued in both its direct and inverse form.

So, plowing ahead towards a solution to this mess, we can make the
following substitutions:

Let T = tan(yz)
Then
11—
oSV =74 ¢
27
S =14
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COS 2Y3 _ 1 '*(‘16+T15214
sin 2y, = 4(:(_1 ;232)
-1l -141*+1°
cos 3y, = ( )((1 N 12)3 )
213-107+ 3t
sin 3Y, = (l N 12)3

With these substitutions and after considerable cursing, erasing, and

fiddling with algebra, we massage the “Horrendous Mess” equation
into the following more attractive and tractable form:

0 =16 + AT+ AT AT+ AT AT+ A
5 4 3 2 1 0

In this new form, Kj = QJ./Q6 forj=0,1,2,3,4,and 5 and where
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Qg = =205 +20, - 20, +0
Qs = — 1205 + 80, —40,

Q, = 300a; -10a, -20, +3a,
Q; = 40 a5 —8a,

0, = -300a; -100a, +2a, +3 0,
Ql - 12 063‘)—-80(.2;— 4,(11))

Q) =0 =20, +20,+20, +0,

Now many pages ago when you were but a little tot, naive in what
you were getting into and eager for knowledge, you learned that y, =
0 was a trivial solution to the compatibility equations as was Y, = 0
Therefor, —0

T =tan (%2')

must be solutions to this equation. Using synthetic division, we can
reduce this equation from a sextic to a quartic without needing to call
in the public health authorities but by merely dividing out these two
known roots. We have:

5t

0 = TO+ AT+ AT+ AT + A, T  + AT

T, = tan (%i)
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where

o —an[8)

Reshuffling this symbolically gives:
0 =T* + U, T+ UyT° + WT + Yy

where
Wy, =As+ Ty

— 2
Wy, = A, + TAs + Tj
W, =As+ TAy + Tg Ast T;
w, =A, + TAs + Tg Ayt Tohs+ Tg

/AAJ N
Where does this all get us?

I’'m glad you asked. After all this futzing around, we have reduced
the five position compatibility problem to the solution of a quartic
equation with known, deterministic coefficients. The nice thing about
having a quartic is that quartics can be solved in closed-form to yield
four, two, or zero real roots, T,. Now possibly getting zero real roots
is a bummer (after all that work) but it 1s much better to know that
there aren’t any answers to your question than to spend weeks look-
ing for a solution that you can prove theoretically doesn’t exist!
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With that in mind, we can plow ahead and solve this quartic in closed-
form for up to a maximum of four T ’s.

For each real root T,_that we obtain, we can solve for a corresponding

Y,, =2 tan™' (Tk) k =1,2,3,4 (we hope!)

Then we can plug these ¥2,s back in and unwind the whole process.
We get:

C, = A3(l—i + A, ewz")

3 —_—
dy = K—lAzewz" + Z AJ-Z—S—J- — A4E + AIEe‘sz

=
Cy = 3(A1 +A, e””)

and

m—

Mushing (mooshing??) these values back into our old equations (35)
and (6) up to four times (if we were lucky enough to get four real
roots) we get:

iy Vi —
Clke 3k+C1k€ 3k ——dlk
C. e+ Cy e =—dy,
Last but not least, (well, not really last but close enough to last so

that I'll give you some false hope) we can solve this pair of equations
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using Cramer’s rule for

- dlk Clk
- dzk Cu
e =
Clk Clk
Czk Czk
and
(A, + Aees A e‘m)
eiY4k —
A,
and \ o .
- Al + A2€ Y2k+ A3€N3k
e"sk =
A,

and (last but not least)

. . ]
(2 — 1) (e — D || Z

1k
(e —1) (e« —1) W,
i |
which allows us to solve for
Z,, W, k=1234

and, if we are still conscious to appreciate it,

K,.M, k=1234
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As the proctologist said to his nurse...

Where will it all end, Miss Jones??

After all that pain and suffering we end up with four, two, or no
Burmester Point Pairs from which we can design up to six possible
four-bars (in the best of all possible worlds) to move the body through

the five given positions. Unfortunately, all the solutions might turn
out to be imaginary! Imagine that!

Of course, if the mechanism is to be of any real-world use, it must
also have good transmission angles, so our maximum of six possible
mechanisms might not include any with good transmission. Also, of
course, our mechanism must have the right Grashof type, so of the
maximum of six possible mechanisms and of the subset of those that
have good transmission angles, there might not be any with the
Grashof type we are looking for. Also, of course, the mechanism
must meet our space constraints, so of the maximum of six possible
mechanisms and of the subset of those that have good transmission
angles, and of the subset of those that have the Grashof type we are
looking for there still might not be any that meet our space con-
straints. (Some of the circlepoints or centerpoints might turn out to
be in Madagascar wherever the hell that is!) Finally, of the maxi-
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mum of six possible mechanisms and of the subset of those that have
good transmission angles, and of the subset of those that have the
Grashof type we are looking for and of the subset of those that meet
our space constraints there might still not be any that meet your boss’s
prejudice against using a linkage mechanism for the job in the first
place. Damn. That’s life. Ain’t it a bitch?

Suppose | heed a
mechanistm fo syn-
chronize the rotations
of two links?

chronize the rotations of the input and output links in some

desired way. For instance, you may be designing a piece of
machinery in which a given series of rotations of the motor shaft
needs to produce a different series of angular rotations of an output
<haft where the relationships are weird kind of like my strange uncle
Moishe and the rest of the family.

E very now and then you need to design a linkage that will syn-

Kinematicians call this a “Function Generation Problem.” (I'm not
talking about the problem of my uncle Moishe but I'm talking about
the problem of designing a machine like the following:
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' "( 9"
et
o .

Here, you may have a table giving desired X values versus Y values

that need to be matched up at a certain desired number of precision
positions, as in:

With a slight twist on the theory you now know (and a little bit of
luck) a four-bar linkage can hopefully be synthesized to sit inside
the box and provide the nonlinear coupling between the rotations

of the shafts carrying the x and y pointers.

At least for two, three, four, or ﬂw\
design positions... -

O
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You can let ¢ (the rotations of the input crank) be the linear analog

of x and v (the rotations of the output crank) be the linear analog
of y.

Let ¢IJ — R¢ (X‘l - xl)

le = R‘U (yJ - yl)

Here, R o and RW are scale factors that you can choose so as to give

the best performance. You can pick the scale factors using your
best judgment, common sense, a Ouiji Board, a dart board, or some
fancy mathematical optimization theory but let’s assume you have
dones so and we’ll see what happens next.

lee factors are furl@
per fortnight...
/“-—’_."M

_ -
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Not to ask a stupid question but
how are we going to do function
geheration when all we know how

to do is motion generation???

/ﬁ\
’m glad you asked! /&
Here’s how:

Imagine you are sitting on the input crank watching the linkage
move around from its starting #1 (reference) position to a typical j*
everything else

displaced design
That’s a Kinematic [nver-
sion as [ recall...
moves around

position. From
your viewpoint,
the input crank
stays fixed while

you. If the input crank rotates through an angle ¢,, while the output
crank rotates through v, what would you see happening to the
actual frame link and the output fixed pivot? By what relative
angle would you see the output crank rotate?

the frame and
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N

AN
\W IJ

Fixed output pivot® The output
link appears
to have ro-
tated by this
angle:

lj_q)lj

... and ends up here!

Under the kinematic inversion, you see the opposite fixed pivot
swing down away from the link you are riding on through the
angle -¢ . It swings on a circle centered on the input crank’s fixed

J . .
pivot. At the same time, you s€c the output crank rotating through
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the angle vy, -¢,.. Since for function generation (and only for func-
tion generation) relative proportions are all that are important and
not the absolute size or orientation, you can pick the frame link to
be a unit horizontal link if you like. Then you can synthesize the
function genera-
tor linkage using
the motion gen-
eration tech-
niques you al-
ready have mas-

[ like! that way it will
look like the example in

the picture! /
tered! (You have

mastered them,

haven’t you?)

Synthesize the function generator as an inverted motion generator
that moves the follower link through its observed motion with re-
spect to the input crank link. For instance, if you were doing a five
position synthesis (perhaps because you were a glutton for punish-
ment) you would input into your program the following data:

/

r=1e"
J
D =v,-0,

1=2,3,4,35, etc.
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Up to four Burmester Point Pairs might come out of your program
if all the solutions are real.

One of the resulting centerpoints will be at (0, 0) and is the fixed
pivot beneath the input crank. The corresponding circlepoint will
be at (1, 0) and will in reality be the given location of the output
crank’s fixed pivot. Each of the remaining circlepoint-centerpoint
pairs represents a possible coupler link for the function generating
four bar. The circlepoint represents the output crank’s moving
pivot in the reference (#1) design position and the corresponding
centerpoint represents the position of the input crank’s moving
pivot in its starting position.

Using five precision positions you get at most three possible func-
tion generators for a given data set.

On the other hand, if you are doing a four position synthesis you
will get a single infinity of function generators from which to
choose. The centerpoint curve will pass through the two pivots on
the input crank and the circlepoint curve will pass through the two
pivots on the output crank.

Once you have the linkage designed, you can scale it up or down
and you can tighten the setscrews holding the input and output
pointers on their shafts at any fixed offset angle that meets your
fancy. You can even stand the whole linkage box on its end and it
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will still generate the same functional relationship between the
input and the output!

A typical matched circlepoint-
centerpoint pair

Circlepoint
Centerpoint Curve
Curve
/
5'“
hr, =10 I
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f course, it is possible you may have an actual function
you want to generate as in:

y = f(x)

a<x=<P

I
|
|
o

Once again, you can let ¢ be the linear analog of x and y be the linear

analog of y and you can pick the scale factors R, and R just the way
you did before.

- X

..d________.

Given the limited number of adjustable parameters in a four-bar link-
age, we will only be able to exactly match the desired function at
five precision points. We will need to accept a built-in structural er-
ror in between those precision points but we can take steps to mini-
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mize that structural error. (In fact, if the function is well-behaved, we
might not even be able to see the error but in theory it exists even if
it 1s so miniscule that it doesn’t matter to our application.)

This structural error is not to be confused with errors due to manu-
facturing tolerances or slop in the joints. It exists even if all the parts
were perfectly made to nano-technology tolerances. It is hard-wired
into the mechanism by the laws of mathematics. Trigonometry doesn’t
bow to any technology!

s,

How should we pick precision
poihts to minhimize the structural

——_error? ~

In a memoir on straight-line mechanisms Théorie des Méchanismes
Connus Sous Le Nom de Parallélogrammes Chebyshev introduced
Chebyshev Polynomials. He showed that with N accuracy points the
best (least maximum error) situation occurs when the accuracy points
are spaced so that the error reaches equal and opposite extreme val-
ues N + 1 times in the interval of interest. So with five accuracy
points we’d want the structural error to look something like this:
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} Generated y = {(x)

Function
Error

Cray Expnde Vet
Emor Sk

Precision points are projections of the vertices
of a 10 sided polygon inscribed on the interval
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o construct the locations of the precision points first lay out a
circle whose diameter runs from o to  on the x axis. Then
inscribe a polygon with 2N sides in that circle. (Be sure that
the sides of the polygon near o and {3 are perpendicular to the x axis.)

The best first-try spacing for the N precision points is given by the
projection of the locations of the polygon’s vertices. Notice that the
first and last precision points aren’t located at o or at 3 !

Using these precision points the structural error curve will wobble
back and forth close to the desired ideal function. In between each of
the given precision points the error will take on values that are ap-
proximately equal and opposite in sign. The error will also hit its
maximum value just at the extreme ends of the desired interval. In
order to illustrate the concept the error scale on the preceeding figure
has been grossly exaggerated so you can actually see the error.

If the function being synthesized was a Chebyshev polynomial and it
was being approximated by a lower order Chebyshev polynomial,
this would be the i1deal spacing but in practice the spacing might
need to be fudged slightly if you wanted to perfect the spacing for a
general function.

he important thing to note is that the linkage is synthesized at

its first precision point (the reference position) and not at the

start of the interval. It must be run back to get it into the
actual starting position at .
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